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Abstract: This paper analyzes the interaction between regional economic growth and air pollution in
China and Korea. The relationship between gross regional product per capita and industrial emission
of sulfur dioxide emission is examined at the regional level using simultaneous equation models
covering 286 cities in China and 228 cities and counties in South Korea of the period 2006–2016.
The results find that regional differences existed in the relationship between air pollution and economic
growth in two countries. In both countries, an inverted U-shaped pattern was found in metropolitan
areas while a U-shaped pattern of non-metropolitan areas. Although the emissions of pollutants in
metropolitan areas of both countries have shown a downward trend in recent years, there is still
a large gap between the overall emission levels of China and South Korea. Moreover, the level of
pollutant emissions of China’s metropolitan areas is much higher than in non-metropolitan areas,
while the opposite result has occurred in Korea. In China, there was an inverted U-shaped relationship
of the eastern and northwest region, while U-shaped relationships existed in the southwest, central
and northeast regions.

Keywords: air pollution; regional economic growth; international comparison; China; South Korea

1. Introduction

The relationship between economic growth and environmental pollution has been a longstanding
global concern since the 1970s. According to the Environmental Kuznets Curve (EKC) theory first
proposed by Grossman and Krueger [1] and Panayotou [2], there is an inverted u-shaped relationship
between income level and environmental degradation. In the first stage, economic growth is associated
with environmental deterioration. At this stage, the increase in industrial activity in countries with lower
levels of economic development leads to an increase in energy-intensive production and an increase
in pollutant emissions. With the development of services and knowledge-based technology-intensive
industries, the environmental degradation trend gradually declines due to environmental awareness,
coupled with changes in production and stricter environmental regulations. The EKC literature suggests
that economic growth may affect environmental welfare through three different channels: scale effects,
composition effects and technique effects. The growth of the economic scale would result in a proportional
growth in environmental pollution, and the changes in the industrial structure would lead to the reduction
of pollution intensity [3]. Further economic growth causes technological progress through which dirty
and obsolete technologies are replaced by upgraded and cleaner technologies that improve environmental
quality [4]. Extensive previous works found that the impacts of economic growth on environmental
pollution can be generally divided into four relationships: an inverted U-shaped relationship [1],
a monotonically increasing relationship [5–10], a U-shaped relationship [4,9,11–14] and a N-shaped
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relationship [1,15–17]. However, the reverse effect of the environment on economic growth has received
relatively little attention. Another limitation of existing research is that most of the previous research
discussed the relationship between economic growth and environmental pollution from the national
level viewpoint, with little attention paid to regional perspectives.

Clarifying the relationship between environmental pollution and economic growth at the regional
level is critical for two reasons. First, the regional economic gap is a key obstacle to effective control of
pollutant emissions because different economic conditions and industrial structures are closely related to
local emission patterns and trends. The regional economic gap determines different economic growth
patterns and industrial structures. For instance, Beijing, the capital city and a first-tier city in east China,
had a relatively high level of gross regional product (GRP) per capita of US$ 19,769 in 2018. The service
industry was highly developed, accounting for 81.0% of the total GRP, and the manufacturing industry
only accounted for 18.6%. In the three typical third-tier cities of east, west and central China, namely
Shantou city, Xianyang city, and Chenzhou city, the per capita GRPs in 2018 were US$ 6308, US$ 8261
and US$ 7182, respectively, with manufacturing accounting for 50.8%, 56.9% and 46.1% of the total GRP.
In the more developed regions, manufacturing accounts for a relatively small proportion of GRP and
pollutant emissions are relatively low. However, in less developed areas, manufacturing enterprises are
still welcomed because they are needed to stimulate the local economy and create more jobs [18–20].
Manufacturing industries would exert more significant impacts on air pollution than other industries
due to relatively intensive energy use in the production process and high pollutant emissions. Thus,
the regional economic gap and difference in industrial structures will inevitably lead to varying air
pollution across regions. Second, the intensities of China’s environmental regulations vary from region
to region. For instance, the pollutant discharge fee rate of air pollutants in Beijing was about US$ 1.73 per
unit of pollution; however, the pollutant discharge fee in the western provinces, such as Shaanxi, Ningxia,
Henan, was only about US$ 0.17. Strict environmental regulations could force the emission-intensive
industries to transfer from the eastern regions to the central or western regions of China with relatively
less stringent environmental regulations which are regarded as “pollution paradise” [21–23]. Therefore,
regional economic development levels and environmental regulations vary from region to region,
resulting in a gap between the pollution levels. Regarding the relationship between economic growth
and environmental pollution, national-level analysis provides only a general understanding of how
variables are broadly related and thus provide little guidance for policymaking [24]. Understanding
different patterns of economic growth and environmental pollution at the regional level and determinant
factors of local pollution will help to make decisions on regional pollution control policies based on
regional realities.

Different from previous studies, this paper is conducted with a primary focus on the following
questions. How does the relationship between air pollution and economic growth differ by region with
different stages of development? In different countries, whether there are diverse regional patterns of the
relationship between air pollution and economic growth? Will the environmental quality and economic
performance affect each other? The purpose of this paper is to analyze the interaction between regional
economic growth and air pollution in China and South Korea (hereafter abbreviated as simply Korea).
Both countries face serious air pollution problems, and the air quality of the two countries is closely related
to each other. The linkages between economic growth and sulfur dioxide (SO2) emissions are estimated
at the city and county level using simultaneous equation models covering 286 cities in China and 228
cities and counties in Korea during the period 2006–2016. The focus is on SO2 because SO2 emissions
are recognized as a typical transboundary air pollution problem which has already induced various
countries to cooperate through supranational institutions [25]. Particularly, SO2 is one major pollutant
that poses significant risks in many developing countries undergoing a process of industrialization. SO2

pollution causes severe respiratory problems and significant ecosystem degradation due to acid rain
formation [26,27]. Because this paper aims to examine the regional differences rather than the overall
characteristics at the national level, the division of the region is a key point of this paper. To explore
whether there are diverse regional patterns in different countries with respect to the relationship between



Int. J. Environ. Res. Public Health 2020, 17, 2761 3 of 20

air pollution and economic growth, this paper introduces two models of each country: metropolitan areas
and non-metropolitan areas in China and Korea. Because of both geographic and regional endowment
differences, economic development is quite uneven among different regions in China. Therefore, this
paper divides China into five economic regions: eastern China, central China, northwest China, southwest
China, and northeast China. The rest of this paper is organized as follows: Section 2 is a review of the
literature review. Section 3 introduces the method and data source. Section 4 describes estimation results.
Section 5 discusses the policy implications. The last section summarizes the conclusions.

2. Background

The most widely used method for analyzing the relationship between economic growth and
environmental pollution is the EKC hypothesis. After the first empirical EKC study of Grossman and
Krueger [1], Panayotou [2] called the inverted U-shaped pattern an Environmental Kuznets Curve
after the original Kuznets curve, which describes an inverted U-shaped relationship between income
and income equality Kuznets [28]. The EKC argues that in the early stage of economic development,
the quality of the environment tends to decline until the average income reaches a certain level in the
development stage and then improves. The validity of the environmental Kuznets curve hypothesis
has been widely examined by different studies over the years. The conclusion is various because of
different choices of types of data, pollutant, country and approach (as shown in Table 1). There were a
few criticisms on the EKC hypothesis. First, the evidence in favor of an inverted U-shaped relation is
not robust and the locations of the turning points are sensitive to both slight variations in the data
and to reasonable permutations of the econometric specification [29]. Second, the empirical evidence
supporting EKC crucially depends on the selected pollutant, the sample composition and the period
considered [30].

Based on the EKC hypothesis, many other studies believed that the relationship between economic
growth and environmental pollution is N-shaped [1,15–17]. Compared to the inverted U-shaped pattern,
the N-shaped pattern implies that in the early stages of economic development, environmental pressure
tends to rise with economic growth and then decline but rises again after reaching a critical level of
economic development. Leib [15] pointed out that an N-shaped pattern exists due to the external shocks,
internalization of the pollution externality, the exhaustion of abatement opportunities and decreasing
returns to scale of abatement technology. With continuous economic growth, the environmental
carrying capacity reaches its optimal level, and technological progress also reaches the saturation point
and thus further increase in production cannot mitigate the adverse impact on the environment.

One of the different views on the EKC hypothesis is that there is a monotonically increasing curve
that exists between pollution and growth [5–10]. Holtz-Eakin and Selden [5] examined the relationship
between economic development and carbon dioxide emissions using the global panel data of 130
counties. They suggest that global carbon dioxide emissions growth will continue to grow at an annual
rate of 1.8% in the foreseeable future and continued increase in emissions is due to the fastest growth
in output and population in low-income nations. Ang [7] provided evidence for a robust long-run
relationship between pollutant emissions and output in France from 1960 to 2000. The results showed
that in the long run, output growth can promote both CO2 emissions and energy consumption. Using
the time-series data from 1960 to 2005, Halicioglu [8] concluded that income was the most significant
variable to explain the CO2 emissions in Turkey, followed by energy consumption and foreign trade.
Chandran and Tang [9] found that the inverted U-shape EKC hypothesis is not applicable to Indonesia,
Malaysia, and Thailand. The relationship between CO2 emissions and income tends to be linear in
Indonesia and a normal U-shaped curve in Malaysia and Thailand. Al-Mulali et al. [10] revealed
that the EKC hypothesis does not exist because the relationship between GRP and pollution is a
monotonically increasing curve in both the short and long run in Vietnam during the period 1981–2011.

Another point of view contrary to the EKC hypothesis provides evidence in support of a U-shaped
relationship between pollution and economic growth, indicating that pollution emission decreases
with economic growth initially and then increase. Moomaw and Unruh [11] concluded that there is a
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U-shaped and N-shaped relationship between CO2 emissions and income that exist in 16 OECD (The
Organisation for Economic Co-operation and Development) countries in the period from 1950 to 1992.
They indicated that it is misleading to interpret EKC results as a process of income growth that all
countries must pass through. Kaufmann et al. [12] indicated a U-shaped relation between the GRP
per capita and the atmospheric concentration of sulfur dioxide for 23 counties between 1974 and 1989.
The concentration of sulfur dioxide tended to decrease as per capita GRP rises from $ 3000 to $ 12,500
but after that the concentration of SO2 increased. Dinda et al. [4] found a U-shaped shift between per
capita income and the annual mean concentration of suspended particulate matter and SO2 in 49 cities
of 33 countries from 1979 to 1990. They pointed out that without environmental degradation, further
increases in income cannot be because of the technical limits of industrial pollution control. In addition,
Ozcan [13], Chandran and Tang [9] and Wang et al. [14] also found more similar cases of U-shaped
relationship between CO2 emissions and economic growth in the Middle East and Asian countries.
Table 1 shows the empirical research results published between 1995 and 2017. The EKC hypothesis
was tested using different pollutants by variable economic indicators, such as energy consumption,
gross domestic product, trade openness, industrial output, urbanization, population density, and
foreign direct investment.

Table 1. Reviews on the Relationship between Economic Growth and Pollution.

Patterns Authors Dependent Variables Independent Variables

Monotonic
rising curve

Holtz-Eakin and Selden [5],
Dasgupta et al. [6], Ang [7],
Halicioglu [8], Chandran

and Tang [9],
Al-Mulali, et al. [10]

Annual emissions of CO2

Gross Regional Product (GRP) per capita
and square, Energy Consumption, Output,
Foreign Direct Investment (FDI), Transport
energy consumption, Labor Force, Exports

and Imports

Inverted
U-shaped

Grossman and Krueger [1],
Panayotou [2]

Annual emissions of
NO2, SO2, suspended

particulate matter

GRP per capita and square, Population
density, Industry Shares in GRP,

Trade Intensity

U-shaped

Moomaw and Unruh [11],
Kaufmann et al. [12],

Dinda et al. [4], Ozcan [13],
Chandran and Tang [9],

Wang et al. [14]

Annual emissions of
CO2, SO2, suspended

particulate matter

GRP per capita, Population growth, Spatial
intensity of economic activity, Energy

consumption, FDI, Transport
energy consumption

N-shaped

Grossman and Krueger [1],
Aslanidis and

Xepapadeas [16],
Babu and Datta [17]

Annual emissions of
CO2, NO2, SO2, Soil
quality index, Water

quality index,
Air quality index

GRP per capita, GRP, GRP square, GRP
cubic, Temperature, Import shares,

Share of the tertiary industry,
Environmental degradation index

and Population

Although many researchers have carried out key studies on the relationship between economic
growth and air pollution, most have focused on the overall characteristics of air pollution at the
national level, using cross-country data or provincial level data of an individual country. In fact, due to
regional heterogeneity, different countries have diverse patterns of economic growth and air pollution
at the regional level. Using a panel data set of Malaysian states, Vincent [31] found that the EKC
hypothesis between the emission of six pollutants and income was not fulfilled. The pollution-income
relationships showed different trends of different pollutants because of different characteristics of the
processes generating pollution, natural resource endowments, shifting patterns of population, and the
impacts of environmental policies. List and Gallet [32] and Milimet et al. [33] used the same data set
state-level panel data from the United States from 1929 to 1994 to examine the relationship between
air pollutants SO2 and NO2 and per capita income. The results provided evidence that an inverted
U-shape characterizes the relationship between per capita emissions and per capita incomes at the
state level, but differences in the level of the turning points across states. Park and Lee [34] explored
the relationship between economic growth and air pollution by using the annual panel data of 16
metropolitan areas in Korea from 1990 to 2005. The results showed that GRP is negatively related to
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air pollution caused by SO2, failing to verify an inverted U-shaped nor N-shaped curves. In the case
of China, Jiang et al. [35] found an inverted U-shaped relationship between per capita income and
per capita emissions for waste gas emissions from fuel burning and wastewater, while a U-shaped
relationship for waste gas emissions from production using provincial panel data from 1985 to 2005.
They concluded that the less developed central and western regions appear to have turning points
occurring at lower income levels than the developed coastal region. Song et al. [36] examined the
relationship between waste gas, wastewater, and solid waste pollution and economic growth from
1985 to 2005 using provincial data in China and found that all three pollutants showed an inverted
U-shaped pattern. They also found that only a few high-income regions have reached the stage of
environmental improvement, while most provinces have more severe environmental degradation.
Wu et al. [37] analyzed the impacts of various carbon emission factors in the four classified regions,
namely, a high economy and high carbon intensity region, a high economy and low carbon intensity
region, a low economy and low carbon intensity region, and a low economy and high carbon intensity
region. They concluded that capita carbon emission increases monotonically with per capita GRP in all
regions, and the most significant factor of emission in four regions is the industrial structure, energy
intensity, population size and per capita GRP, respectively.

These regional analyses show that there are multiple patterns of pollution-growth relationships
across regions, and it is valuable to compare regions with different economic levels. This paper differs
from previous studies in two ways. First, a cross-country comparative perspective is adopted to
examine the relationship between air pollution and economic growth at the regional level. Compared
with single-country research, this paper applies the multinational analysis of two Asian countries facing
severe air pollution problems, namely China and Korea, to explore whether exists a different regional
pattern among counties. Second, unlike most provincial-level studies, this paper uses city-level data
and concern on the relationship between air pollution and economic growth not only among regions at
different stages of development but also among cities at different scales. Previous regional studies
in China generally consider the differences between eastern, central, and western China. Based on
existing regional research, this paper adopts a more detailed regional division method. In addition,
this paper also focuses on the regional difference between metropolitan and non-metropolitan areas.

3. Methods

3.1. Model Specification

This paper uses the simultaneous equation model (SEM) methodology to analyze the relationship
between regional economic growth and air pollution covering 286 cities in China and 228 cities and
counties in Korea during the period of 2006–2016 (Figure 1). An important criticism of some existing
empirical EKC studies is the failure to consider the feedback effect of pollution on economic growth.
Perrings [38] proposed that the economy and its environment are jointly determined. It is inappropriate
to estimate a single equation model assuming unidirectional causality from economy to environment.
Barbier [39] found clear evidence that in the early stages of development in many developing
countries, when the environment deteriorated, rapid growth attempts could be counterproductive
and unsustainable. Pollutant emissions may limit the supply of environmental inputs through
environmental degradation, or they may reduce workday losses due to health problems caused by
pollution and reduce production. Therefore, it is more appropriate to analyze the relationship between
environmental pollution and economic growth by SEM which simultaneously estimates the parameters
of the whole system.
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Figure 1. Regional Division of Two Counties.

To handle the potential endogeneity caused by the bilateral causality between economic growth and
air pollution, this paper applies the SEM to test the relationship between per capita GRP and the annual
emission of SO2 using the Three-Stage Least Squares (3SLS) method (the Two-Stage Least Squares (2SLS)
method developed by Theil [40] is the basic approach for the SEM. 3SLS estimation introduced by Zellner
and Theil [41] is more advanced than 2SLS because 3SLS takes into consideration the contemporaneous
correlation of disturbances across the equations in the SEM. In addition, as Kennedy [42] stressed,
3SLS is generally believed to be more consistent and asymptotically more efficient; therefore, it is
preferred to 2SLS if the disturbances of the separate equations are correlated). In this paper, the choice
of control variables is based on evidence from the existing literature. Extensive empirical studies have
attempted to analyze the causal relationships between pollutant emissions, energy consumption and
economic growth [7,43,44]. Kraft and Kraft [45] proposed that the imbalance of industrial structure
had a significant impact on the relationship between power consumption and economic growth. Many
studies have confirmed that the impact of industrial structure is significant [43,46–48]. Therefore,
energy consumption and industrial structure are also tested as the impact factors of the relationship
between growth and pollution. Before estimating the basic model, this paper tests the cross-sectional
dependence, followed by panel unit root and cointegration tests for these variables in all models.
Relying on the assumptions of cross-sectional independence may lead to inefficient and inaccurate
estimation results if the panel data are cross-sectionally dependent. Therefore, this paper uses the CD
(Cross-sectional Dependence) test developed by Pesaran [49] to the analyzed variables to investigate
whether each panel data is cross-sectionally independent. The CD test strongly rejects the null
hypothesis of no cross-sectional dependence (Table A1). To cover this issue, this paper applies the
UO (Ucar and Omay ) nonlinear unit root test [50], which allows for cross-sections dependence and
nonlinearity. Ucar and Omay [50] propose a nonlinear panel unit root test by combining the nonlinear
framework in Kapetanios et al. [51] with the panel unit root testing procedure of Im et al. [52]. The test
investigates the unit root null against the alternative hypothesis that at least one individual series
follow a nonlinear stationary process. The nonlinear cointegration tests could be fulfilled through
investigating the unit root for the residuals based on the UO method.

The results of the panel unit root tests (Table A2) show that the original series are non-stationary
sequences, and all the variables are first-order difference stationary. The UO nonlinear test refuses
the null of no cointegration at the 1% significance level indicating that the null hypothesis of no
cointegration can be rejected and providing support for the long-term relationships among study
variables (Table A3):

ln GRPi,t = β0 + β1 × ln EMPi,t + β2 × ln ECi,t + β3ln ISi,t + β4 × ln Emissioni,t + ε1,i,t (1)
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ln Emissioni,t = λ0 +λ1× ln GRPi,t +λ2× ln GRPi,t
2 +λ3× ln Pi,t +λ4× ln ISi,t +λ5× ln ECi,t + ε2,i,t (2)

GRPi,t : Real GRP per capita of city i in period t
Emissioni,t: Per capita SO2 emissions of city i in period t
ISi,t: proportion of output value of the manufacturing industry in GRP of city i in period t
ECi,t: Electricity consumption of city i in period t
Pi,t: Population density of city i in period t
EMPi,t: The number of employed people of city i in period t
εi,t: Error term

3.2. Data Description

In the case of China, the empirical examination of the relationship between regional economic
growth and regional characteristics of air pollution is conducted at two geographic scales. This paper
divides China into five regions: eastern China, central China, northwest China, southwest China, and
northeast China (as shown in Figure 1) based on the classification by the National Bureau of Statistics
of the Republic of China [53] (the regional division method is based on the National Bureau of Statistics
of the Republic of China [53]. The 10 provinces (cities) in the east include Beijing, Tianjin, Hebei,
Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan; the six central provinces
include Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan; and the 12 western provinces (districts
and cities) including Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi,
Gansu, Qinghai, Ningxia and Xinjiang; the three northeastern provinces include Liaoning, Jilin and
Heilongjiang. This paper divides the western region into two regions: southwest and northwest).
Next, in order to test whether there are different regional patterns of pollution-economic growth
relationship across countries, this paper introduces two models of each country: metropolitan areas and
non-metropolitan areas in China and Korea. In China, the metropolitan areas consist of 19 first-tier cities
and 30 second-tier cities, and non-metropolitan areas are defined as the rest 237 third-fourth-fifth-tier
cities. Following Wang et al. [54] and Yang and Dunford [55], this paper uses the city-tier classification
method which is most commonly used for city ranking in China in recent years (This method was
originally published by Yicai Global and the National Bureau of Statistics of the Republic of China [56]
also uses the same city classifications to conduct National Residential Sales Price Surveys. First-tier
cities cover 19 cities, including 4 municipalities (Beijing, Shanghai, Tianjin and Chongqing) and 15
provincial capital cities (New first-tier cities). These cities have a strong economic base, a population
of more than 6 million and abundant educational resources, advanced technology, and convenient
transportation. Second-tier cities cover 30 medium-sized prefecture cities equip with a good economic
base and a population of 4–7 million, including the most eastern coastal open cities and few capital
cities in the central and western China. Third-fourth and fifth-tier cities cover the rest 237 cities,
mainly composed of small-sized cities located in central and western China equip with the relatively
underdeveloped economic condition and a population below 5 million.

In Korea, metropolitan areas cover 74 counties and cities in seven major cities, including Seoul,
Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan. Non-metropolitan areas are composed of the
remaining 154 cities and counties (Figure 1). The Chinese data comes mainly from the City Statistical
Yearbook of China from 2006 to 2016, published by the National Bureau of Statistics of China. The Korean
data is collected from the Korean Statistical Information Service operated by Statistics Korea and the
National Institute of Environmental Research. Because the absence of per capita GRP data at the county
level for Seoul Special City, this paper calculated the GRP in every district of Seoul by multiplying the
proportion of employment in each sector by the total added value. Table 2 reports summary statistics of
the variables that are used in the estimation of region-specific models.
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Table 2. Data Analysis.

China Korea

East Central Southwest Northwest Northeast Metropolitan Non-Metro Metropolitan Non-Metro

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

GRP 6182 0.801 3244 0.642 3944 0.951 2536 0.654 4551 0.657 10,356 0.586 3,851 0.712 19,020 0.632 17,779 1.236

EMISSION 42 1.198 37 0.858 37 1.200 30 1.186 31 0.958 70 0.408 34 0.559 9 1.653 33 2.066

EMP 54 0.855 33 0.623 19 0.741 24 0.797 30 0.619 134 0.867 31 1.459 367 0.239 314 0.563

IS 36 8.466 42 9.875 37 14.470 41 9.697 40 13.088 48 7.398 49 11.939 8 1.098 13 1.300

EC 1173 1.132 491 1.246 622 2.065 364 1.218 995 1.181 2083 0.673 592 1.028 2569 0.961 4829 1.262

POP 54 0.606 42 0.593 10 1.009 28 0.696 16 0.719 39 1.312 28 1.476 77 1.029 10 0.967

Notes: GRP represents the GRP per capita (US$); EMISSION represents per capita emission (ton/10,000people); EMP represents employment (per 1000people); IS represents the share of
manufacturing industry in GRP (%); EC represents the energy consumption (kWh/person); POP represents population density (10,000 people/km2).SD is the standard deviation.
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3.3. Robustness Tests

It is necessary to check how robust the analysis is because the EKC hypothesis is assessed and
tested in various directions, including alternative functional forms, different econometric methods,
the inclusion of additional explanatory variables [57–59]. First, this paper tested the relationship
between per capita GRP and three emission indices, including per capita SO2 emission (Total SO2

emissions emissions/population), SO2 emission intensity (Total SO2 emissions/industrial output value)
and SO2 emissions density (Total SO2 emissions/land area). The results show that the relationship
between the three indexes and per capita GRP shows the same patterns by region, although the
pollution index is changed, the parameter symbols of ln(GRP) and its quadratic term are consistent in
all panel models. Because only the per capita SO2 emission index is significantly correlated with the
per capita GRP variable and its quadratic term under the significant level of 10% in all models, we only
reported the results of the models using the index of per capita emission. Second, for choosing the
functional form, this paper uses T-test to check the statistical significance quadratic term and cubic
terms of per capita GRP and omit the cubic terms. Because all coefficients are insignificant in the cubic
estimation, but coefficients in the quadratic estimation are highly significant, we only consider the
quadratic terms in our model. The third step is to choose the estimation method. After examining
the endogeneity of the explanatory variables by Hausman’s test, the per capita GRP variables and its
quadratic terms were rejected as exogenous in the simultaneous equation model. Therefore, this paper
uses the Three-stage least squares method (3SLS) and the interaction terms of exogenous variables
and their quadratic terms were chosen as the instrumental variable for the per capita GRP and its
quadratic term. Besides, this paper applies the over-identification test and weak instrument test to
make sure all the selected instruments are valid. Through the three dimensions of robustness tests
above, this paper confirms the final model which tests the relationship between the per capita SO2

emission index and per capita GRP and its quadratic term. Moreover, the Mann-Whitney U test was
used to compare the differences in the levels of GRP per capita and pollution emission levels across
metropolitan and non-metropolitan areas in both Chinese case and Korean case. In both counties,
the results of the Mann-Whitney U test (as shown in the Table A4) show that the null hypothesis of no
statistical differences is rejected with the value of significance (0.001) is much smaller than α (0.05).
It can be concluded that there are significant differences in the levels of economic growth and pollution
emission between metropolitan areas and non-metropolitan areas in China and Korea.

4. Results

Table 3 presents the empirical results of the SEM. The results show that not only does regional
economic growth have a significant impact on air pollution, but also the impact of air pollution on
regional economic growth is significant (Figures A1 and A2). More importantly, the relationship
between air pollution and economic growth varies in different regions. From the respective of equations
of GRP per capita, the growth of GRP per capita in all models is positively correlated with per capita
emission. The economic growth was much more associated with the increase in pollutant emission
of less developed regions than developed regions. For instance, over the last decade, a 1% increase
of per capita emission could result in a 0.02% increase in the GRP per capita on average per year in
east China, while 0.52%, 0.67% and 0.28% for central, northwest and northeast China. At the same
time, a 1% increase in per capita emission of non-metropolitan areas resulted in 0.44% and 0.26% of
growth in per capita GRP in China and Korea, respectively, which is 0.36% and 0.16% larger than
that in the metropolitan region. It indicates that in both countries, per capita emission has a stronger
effect on economic growth in non-metropolitan areas than metropolitan areas. This result implies
that the development of manufacturing industries, in particular, pollution-intensive industries in
non-metropolitan areas has contributed more to economic growth than metropolitan areas.

From the respective of equations of per capita emission, the results illustrated with the Table 3
models (1)–(5) show that different patterns were found in China at the regional level. Only in the east
and northwest region, the sighs of coefficients of the GRP per capita and its square terms are negative
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and positive, respectively, which suggests that the regional pollution level tended to follow an inverted
U-shape pattern in the period 2006–2016. Such a pattern implies that pollutant emissions decrease with
economic growth after experienced a stage of environmental degradation in the two regions (Figure 2).
According to the China Statistical Yearbook, the proportion of output values of manufacturing to
total GRP from 2006 to 2016 decreased by 19.77% in the eastern region and 17.04% in the northwest
respectively. However, the decline in the proportion of manufacturing in total GRP only realized 8.20%
in the southwest and 7.76% in the central region. According to the National Bureau of Statistics of
the Republic of China, from 2006 to 2016, the proportion of the total output of manufacturing to total
GRP dropped from 46.58% to 36.62% in the eastern region and decreased from 39.47% to 28.94% in
the northwest region. In the southwest, the proportion decreased from 36.10% to 30.84%; the central
region decreased from 42.08% to 38.46%, and in the northeast region decreased from 44.09% to 30.77%.
In the east region and northwest region, energy-intensive industries gradually concentrated in the
sectors with lower energy intensity. Another reason for the declining trend in the developed eastern
regions is strict environmental regulations for polluting enterprises. As mentioned before, the pollutant
discharge fee rate of air pollutants in the eastern region, such as Beijing, was about ten times higher
than that in the western provinces. Stricter environmental regulations in the eastern region have led to
the booming of environmentally friendly enterprises and innovations in industries.

However, the relationship between air pollution and economic growth in the rest of China was
different. The results of models (2), (4) and (5) demonstrate a U-shaped curve relationship in southwest,
central and northeast region indicating that the pollutant emissions increase with economic growth
after the per capita GRP level reaches a certain level. To eliminate the economic gap in China, the central
government implemented the Western Development Strategy and Rise of Central China Plan from
2000 to 2004, and a large amount of investment promoted the regional output, effectively increasing
the GDP of the western and central region.

Moreover, with the adjustment of China’s economic development strategy in recent years, the western
region has received less attention than before, and environmental problems have become more and more
serious [60]. In order to pursue economic development goals and attract investment, local governments
have reduced environmental protection investment and weakened environmental regulations. As a result,
the problems of environmental pollution are increasingly severe with economic growth. In particular,
the proportion of output values of manufacturing to total GRP declined by 28.44% in the northeast
from 2006 to 2016. Even though there is a U-shaped curve, the average GRP per capita level was still
at the declining stage of the U curve indicating that the pollution emission level had been decreased
with economic growth in the period of 2006-2016 in the northeast. Northeast is China’s largest old
industrial base.

Since the implementation of the revitalization policy of the old industrial bases in the northeast in
2003, the proportion of SO2 high-load sectors in total industrial output declined from 23.87% in 2005 to
20.36% in 2013 due to the transformation of the regional industrial structure and the technological
progress [61]. Therefore, adjustment and optimization of the industrial structure were found to be an
effective mean to reduce the air pollution.

The results of models (6)–(9) show that the pattern of economic growth and pollutant emissions
among metropolitan and non-metropolitan areas is reversed in both countries. From 2006 to 2016,
there was a common inverted U-shaped pattern is found in metropolitan areas of China and Korea.
Overall, it indicates that in metropolitan areas of both countries, the pollutant emission decreased
with economic growth. Conversely, in non-metropolitan areas, the U-shaped pattern implied that the
pollutant emission overall increased with economic growth. Such a different result confirms that the
impacts of economic growth on pollutant emission tend to be spatially heterogeneous among cities
with different scales in China and Korea.

The different patterns between metropolitan and non-metropolitan areas in both two countries
could be explained by the more stringent pollution regulation in metropolitan areas. With the rapid
urbanization, air pollution problems have been increasing concern in China. In order to better improve
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the regional air quality throughout metropolitan areas, the Chinese government has implemented a
series of national control policies to reduce the emissions of air pollutants since 2005. For instance,
the Ministry of Environmental Protection has issued the action of “Joint Prevention and Control of
Air Pollution” in 2011, which aims to establish a joint prevention and control system and effectively
improve the regional air quality. It was firstly implemented in three key regions which cover the major
metropolitan areas in China, including the Beijing-Tianjin-Hebei Region, the Yangtze River Delta and
the Pearl River Delta during the period of the 12th Five-Year Plan (2011–2015). The decrease in SO2

from 2006 to 2016 in the metropolitan areas reflects the success of China’s air pollution control program.

Table 3. Estimation Results of Simultaneous Equations by Three-Stages Least Squares Method.

China Korea

East
Model (1)

Central
Model (2)

Northwest
Model (3)

Southwest
Model (4)

Northeast
Model (5)

Metropolitan
Model (6)

Non-
Metropolitan

Model (7)

Metropolitan
Model (8)

Non-
Metropolitan

Model (9)

Equation of GRP per capita

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Intercept 6.853 ***
(15.28)

2.886 ***
(2.63)

1.358
(0.81)

5.762 ***
(3.39)

5.123 ***
(5.06)

6.224 ***
(0.73)

1.170 ***
(0.89)

6.285 ***
(28.93)

5.838 ***
(16.81)

EMP 0.233 ***
(7.55)

0.0552
(111)

0.062
(0.67)

0.118 ***
(1.22)

0.179 ***
(2.58)

0.039 ***
(0.73)

0.485 ***
(13.20)

0.685 ***
(16.66)

0.372 ***
(2.98)

EC 0.480 ***
(33.19)

0.2514 ***
(10.57)

0.222 ***
(8.5)

0.209 ***
(7.33)

0.229 ***
(6.80)

0.599 ***
(16.16)

0.377 ***
(19.99)

0.122 ***
(7.27)

0.218 ***
(6.46)

IS −0.012 ***
(-3.05)

−0.0021
(−0.43)

0.005
(0.95)

0.012 **
(2.53)

0.004
(1.47)

−0.015
(-3.05)

0.003 ***
(1.43)

−0.011
(−1.02)

−0.001
(−0.04)

EMISSION 0.022 ***
(0.34)

0.5231 ***
(4.05)

0.669 **
(3.62)

0.184
(0.93)

0.2837 **
(2.57)

0.083 ***
(0.28)

0.441 ***
(3.54)

0.103 ***
(7.82)

0.261 ***
(4.99)

Equation of Per capita emission

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Parameter
(SE)

Intercept −446.000 ***
(−3.79)

125.429 ***
(3.02)

−203.22 **
(−2.2)

285.475 ***
(2.85)

150.181 *
(1.94)

10.719 ***
(0.61)

15.356 ***
(0.31)

25.286 ***
(4.50)

24.014 ***
(0.54)

GRP 84.002 ***
(3.84)

−23.915 ***
(−2.87)

41.967 **
(2.27)

−57.604 ***
(−2.81)

−27.563 *
(−1.86)

56.317 ***
(0.63)

−0.941 ***
(−0.11)

1.371 ***
(−4.61)

−2.336 ***
(−0.65)

GRP2 −3.857 ***
(−3.80)

1.241 ***
(2.96)

−2.051 **
(−2.23)

2.976 ***
(2.86)

1.328 *
(1.89)

−2.447 ***
(−0.63)

0.046 ***
(0.14)

−0.068 ***
(10.16)

0.118 ***
(0.77)

EC −0.002
(−0.01)

0.138 ***
(3.46)

0.171 **
(2.2)

0.272 ***
(3.35)

0.174 ***
(2.88)

−0.115 ***
(−0.66)

0.023 ***
(0.64)

0.785 ***
(6.64)

0.632 ***
(12.29)

IS −0.006
(−0.610)

0.013 ***
(4.24)

0.009
(0.7)

−0.0001
(−0.01)

−0.005
(−0.85)

0.042 ***
(0.81)

0.060 ***
(12.46)

0.168 ***
(1.96)

0.442 ***
(5.56)

P 0.577 **
(1.99)

-0.510 ***
(−5.99)

−0.182
(−0.9)

0.211 **
(1.80)

0.594 ***
(4.96)

−0.154 ***
(−0.52)

−0.102 ***
(−4.30)

−0.632 ***
(10.25)

−0.026
(1.68)

R-square 0.7483 0.6680 0.5703 0.5842 0.5706 0.6844 0.5564 0.5139 0.7611

Number of
Cross sections 101 88 38 46 33 49 237 74 154

Time series length: 2006–2016

Turning point ($) 7882 2249 4080 2348 4725 14624 4050 20856 19682

Pattern Inverted U
shape U shape Inverted U

shape U shape U shape Inverted U
shape U shape Inverted U

shape U shape

Notes: The curve shapes between per capita SO2 and GDP per capita can be determined from the signs of parameters:
U-shape (If λ1〈0, λ2〉0), inverted U-shape (if λ1 > 0, λ2 < 0). All variables are in log form *** 1% significance level;
** 5% significance level; * 10% significance level. Standard errors are in brackets.

In the case of Korea, the government legislated a special act named “Improvement of Air Quality
in Seoul Metropolitan Areas (SMA, areas including Seoul and Incheon metropolitan cities, Gyeonggi
province)” in December 2003 to improve the air quality in SMA. The main focus of the air quality
improvement plan for SMA (2005–2014) was to regulate the total amount of emissions in the workplace,
to supply low-emission vehicles, and to strengthen gas emission management regulations [62]. After
the implementation of the first phase of an air quality improvement plan, the annual concentration of
main pollutants has significantly decreased in Seoul and Incheon until 2013 [63]. Again, the government
adopted the second phase of the air quality improvement plan from 2015 to 2024 for SMA [64].
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Figure 2. Pollution-Growth Patterns at Five Regions in China.

There is still a large gap between the overall emission levels of China and South Korea, although
pollutant emissions in both metropolitan areas show a downward trend. Figure 3 shows that China
not only has a higher overall level of pollutant emissions than Korea, but also a larger disparity in
regional economic levels. For instance, the average GRP per capita level was found to be US $10,356
and US $3851 for metropolitan and non-metropolitan areas in China, whereas US $19,020 and US
$17,779, respectively, in Korea (Table 2). Another significant difference is that the level of per capita
pollutant emission in China’s metropolitan areas was still much higher than in non-metropolitan areas,
while the opposite result has occurred in Korea. The overall level of pollutant emission in Korea’s
metropolitan areas was obviously lower than in non-metropolitan areas. This can be interpreted
as that higher pollutant emission levels in non-metropolitan areas were associated with a relatively
higher proportion of manufacturing industry in GRP. The average proportion of the manufacturing
industries in non-metropolitan areas was 13% from 2006 to 2016, which is 5% higher than that in
metropolitan areas (Table 2), indicating that more manufacturing enterprises in Korea prefer to locate in
non-metropolitan areas. In China, manufacturing still occupied an important position in metropolitan
areas (48%) in the last decade. In other words, although pollution levels in metropolitan areas of the
two countries have shown a downward trend in the past ten years, there is still a large gap between
China and Korea in terms of the overall level of pollutant emissions, especially the level of pollutant
emissions of metropolitan areas.

From the respective of determinants of pollutant emission, this paper compares the elasticities of
pollutant emission with respect to energy consumption, industrial structure and population density
based on the reduced form of simultaneous equation models. After controlling the effect of economic
growth, the main determinants of air pollution are energy consumption and industrial structure in
metropolitan and non-metropolitan areas, respectively. For instance, with a 1% increase in the proportion
of manufacturing industry output in GRP, industrial SO2 emission in non-metropolitan areas increased by
0.04% and 0.30% in China and Korea, larger than that in metropolitan areas (0.01% and 0.15%). It suggests
that industrial structure has a relative stronger effect on pollutant emission in non-metropolitan areas than
metropolitan areas. On the other hand, in the case of Korea, with a 1% increase in energy consumption,
industrial SO2 emission in non-metropolitan areas increased by 0.38% and 0.17% in metropolitan areas
and non-metropolitan areas, respectively. In the case of China, a 1% increase in energy consumption
was associated with a 0.48% increase in pollutant emission of metropolitan areas and a 0.03% increase
in non-metropolitan areas. The results find that impacts of energy consumption on pollutant emission
were larger in metropolitan areas than non-metropolitan areas in both China and Korea. In addition,
the results found that there was a negative effect of population density of the pollutant emission of most
models; however, the relationship between air pollution and population density was uncertain for the
northwest region in China and non-metropolitan areas in Korea.
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Figure 3. Pollution-Growth Patterns at Different City Scales in Two Countries.

5. Policy Implications

According to the analysis results of this paper, the policy implications could be summarized from
the following three respects: the national level, the regional level, and the city level. The inverted
U-shape patterns of the two countries suggest that pollution levels in metropolitan areas have shown a
downward trend in recent years, whereas there is still a large gap between the overall level of pollutant
emissions of China and Korea. This gap could be attributed to the difference in economic development
stages and the implementation of environmental policies of the two counties. Si et al. [65] proposed that
many environmental policies in China are communicated in the form of government documents lacking
clear legal provisions and regulations. The update of existing environmental laws and regulations
is also relatively slow, and environmental standards cannot adapt to changing environmental issues.
In Korea, environmental policy tools are set up in a way that not only controls the whole process, also
controls before and after the event; besides, reasonable environmental laws and regulations, and timely
updating mechanism provide a guarantee for the effective implementation of environmental policy
tools. Drawing on the experience of South Korea, if the Chinese government pays more attention to
improving the environmental legal system, it will have an effective impact on improving air pollution,
including formulating various market-oriented policy tools, such as environmental taxes and fees, and
a more detailed emissions trading market, and encourage enterprises to establish their own pollution
monitoring systems.

Different from the previous regional research suggesting that there was a similar pattern in the
relationship between air pollution and economic growth across regions in China [35–37]. This paper uses
a more detail regional division method and finds that diverse patterns exist in five regions of China at
different stages of development from 2006 to 2016. The experience of the development model of the
eastern region can provide inspiration for the balanced growth and pollution of the southwest and central
regions from the following three aspects. First, as air pollution levels in the central and southwest regions
deteriorate with economic growth, the government needs to pay more attention to change traditional high
energy-consuming and high-polluting production methods of the local energy-intensive industries to
reduce pollutant emissions. At the same time, it is necessary to strengthen the improvement of production
technology, promote the innovation and promotion of clean production technology. Second, differentiated
regional environmental policies should be designed for different stages of economic development. In the
central and southwestern regions, the main sources of air pollution are the emissions of industrial pollutants.
The environmental regulations for polluted enterprises could be further strengthened in areas where the
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heavy industries and highly polluting industries are densely located. The appropriate environmental
regulations could help to accelerate industrial upgrading and economic transition to a more sustainable
style. Besides, the strong pollution control policy is still needed even there is a clear downward trend
of pollutant emission in the eastern, northeastern and northwest region. Third, increase investment in
pollution control for the southwestern and central region. The U shape pattern of these two regions means
that a large amount of environmental pollution generated in the process of pursuing rapid economic
growth. Even though the local government has started to increase investment in pollution control, but
it has not played a substantial role in recent years [60]. In the western and central region, it is urgent to
increase financial support and arrange for specific financial resources to invest in environmental protection,
especially the improvement of air quality, and strengthen supervision and management of investment in
environmental protection.

The gaps between China’s metropolitan areas and non-metropolitan areas in the terms of both
economic development level and pollutant emission level are much larger than those of Korea. To improve
regional air quality, the actual situation and major determinants of air pollution in both urban and
non-urban areas in China need to be considered. Since the major determinant of air pollutant emissions
in metropolitan areas is the energy consumption, it is crucial to develop new energy industries to reduce
pollutant emissions. It not only relies on the government’s financial subsidies, tax incentives and other
incentive policies, but also promoting the technological progress and industrial upgrading of renewable
energy through the market mechanism. In the relatively backward non-metropolitan areas, it is important
to continuously adjust the industrial structure by encouraging the development of the service industry,
as well as promote the optimization of the internal structure of the secondary industry and encourage
the development of low-pollution and low-energy-consuming industries.

6. Discussion and Conclusions

The purpose of this paper is to analyze the relationship between regional economic growth and air
pollution in China and Korea to explore whether there are diverse regional patterns of different countries.
The major findings of this paper are that regional differences existed in the relationship between air pollution
and economic growth in China and Korea. In both countries, an inverted U-shaped pattern was found
in metropolitan areas while a U-shaped pattern exists in non-metropolitan areas. Moreover, there exist
different patterns in five regions of China, which are influenced by different levels of economic development
and different regional environmental policies. There is still a large gap between the overall emission levels
of China and Korea although the emissions of pollutants in metropolitan areas of both countries have
shown a downward trend in recent years. The level of pollutant emissions of China’s metropolitan areas is
much higher than in non-metropolitan areas, while the opposite result has occurred in Korea.

This paper contributes to the literature from three respects. First, in contrast to the extensive literature
on the relationship between air pollution and economic growth, this study reveals the importance of
regional-level research. Based on the existing regional studies, this paper attempts to adopt a more
detailed regional division method and points out that the patterns of air pollution vary significantly
between regions, filling a gap in relevant research fields at the regional level. Second, this paper focuses
on the differences between cities of different sizes. Different patterns of pollution development in
metropolitan and non-metropolitan areas are compared. In addition, this paper makes a comparison
between two Asian countries, China and South Korea, which are facing serious air pollution problems as
well as large regional differences in economic development levels. One of the limitations of this paper is
that it only focuses on SO2, leaving room for further study of other pollutants in the future. Industrial
development in different regions is closely related to local natural resources, and our analysis may ignore
the impact of production activities in some pollution-intensive industries with other pollutants as the
main pollutants on air quality. For further research, more diverse pollution phenomena need to be paid
attention to, including other air pollutants, water pollution, and solid pollution. This paper mainly
analyzes the impact of economic growth, industrial structure, energy consumption and population factors
on air pollution in the two countries. However, the environmental policies of the two countries also play
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a very important role in regional air pollution. Since it is difficult to develop a common policy variable
available for both countries, more policy factors have not been taken into account. In future research, it
is necessary to continue to pay attention to this direction of research. In addition, the limitation of the
methodology in this paper is that, due to the limitation of data, the model only considers short-term
analysis and cannot establish the long-term dynamic analysis model.
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Appendix A

Table A1. Results of Cross-sectional Dependence Test.

Panel A Panel B

Pesaran CD 39.773 *** 23.724 ***

p-value 0.000 0.000

Number of observations 286 228

Notes: Panel A includes 285 cities of China, 2006–2016; Panel A includes 285 cities of China, 2006–2016. *** 1%
significance level.

Table A2. Results of Panel Unit Root Test.

Panel A Panel B

Level First differences Level First differences

EMISSION 2.930 5.003 *** 1.114 4.558 ***

GRP 2.488 9.015 *** 1.649 8.570 ***

GRP2 2.090 4.002 *** 7.173 24.447 ***

EMP 1.269 1.705 *** 5.192 5.260 ***

EC 0.930 2.347 *** 1.028 2.792 ***

IS 3.924 8.580 *** 4.641 9.025 ***

POP 2.314 3.259 *** 2.737 16.704 ***

Notes: Panel A includes 286 cities of China, 2006–2016; Panel B includes 228 cities and counties of Korea, 2006–2016.
*** 1% significance level.

Table A3. Results of Cointegration test.

Statistic p-Value

Panel A.

Equation of GRP per capita 0.063 *** 0.000

Equation of per capita Emission 0.236 *** 0.000

Panel B.

Equation of GRP per capita 1.115 *** 0.000

Equation of per capita Emission 0.664 *** 0.000

Notes: Panel A includes 286 cities of China, 2006–2016; Panel B includes 228 cities and counties of Korea, 2006–2016.
*** 1% significance level.
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Table A4. Results of Mann-Whitney U-test.

U-Value Z-Statistics p-Value

Korea

GRP 193,144 −6.4637 *** <0.00001

Emission 175,605 −8.6696 *** <0.00001

China

GRP 220,681 15.0719 *** <0.00001

Emission 972,885 16.6324 *** <0.00001

Notes: A value of p < 0.05 was considered to be significant. *** 1% significance level.
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Figure A1. Growth-Pollution Patterns. Notes: The X-axis is per capita SO2 emission (ton), Y-axis is
GDP per capita ($).
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