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A B S T R A C T

A variety of low-cost sensors are now available on the consumer market for measuring air pollutants. The use of
these low-cost sensors for ambient air monitoring applications is increasing and includes fence-line or near-
source monitoring, community monitoring, emergency response, hot-spot identification, mobile monitoring,
epidemiological studies, and supplemental monitoring to improve the spatial-temporal resolution of current
monitoring networks. Evaluating and understanding the performance of these devices is necessary to properly
interpret the results and reduce confusion when low-cost sensor measurements are not in agreement with
measurements from regulatory-grade instrumentation. Systematic and comprehensive field and laboratory
studies comparing low-cost sensors with regulatory-grade instrumentation are necessary to characterize sensor
performance. This paper presents the results of 12 particulate matter (PM) sensors measurement of PM2.5

(particles with aerodynamic diameter less than 2.5 μm) tested under ambient conditions against a federally
equivalent method (FEM) instrument at an ambient air monitoring station in Riverside, CA spanning over a 3-
year period from 02/05/15 to 03/27/18. Sensors were evaluated in triplicate with a typical time duration of 8-
week. Performance evaluation results found 6 of the 12 sensor triplicates with average R2 values≥ 0.70 for
PM2.5 concentrations less than 50 μg/m3. Within this subset, the Mean Absolute Error (MAE) ranged from 4.4 to
7.0 μg/m3 indicating the need for caution when interpreting data from these sensors. Additional analysis re-
vealed that the impact of relative humidity on sensor performance varied between models with several models
exhibiting increased bias error with increasing humidity. Results indicate that a number of these sensors have
potential as useful tools for characterizing PM2.5 levels in ambient environments when data is interpreted and
understood correctly with regard to existing ambient air quality networks. The performance evaluation results
are specific for Riverside, CA under non-repeatable ambient weather conditions and particle properties with the
expectation that performance evaluation testing at other locations with different particle properties and weather
conditions would yield similar but non-identical results.

1. Introduction

1.1. Particle pollution

Particulate matter (PM) is a ubiquitous environmental pollutant that
has been linked to a host of health issues. Fine Particulate matter
(PM2.5; particles with aerodynamic diameter less than 2.5 μm) have
been linked to respiratory illness, cardiovascular disease, stroke, lung
cancer, reproductive issues, and premature death (Pope et al., 2002,
2009; Harris et al., 2014; Apte et al., 2015) In 2015, an estimated 4.2
million people died prematurely due to PM2.5 exposure putting it in the

top five mortality risk factors worldwide (Cohen et al., 2017). Based on
modelled data, the World Health Organization (WHO) estimates 92% of
people are exposed to PM2.5 concentrations exceeding WHO's re-
commended annual mean of 10 μg/m3 (World Health Organization,
2016). In addition to health impacts, PM pollution can impair visibility,
damage the environment, and cause material damage (Al-Thani et al.,
2018; Wu et al., 2018).

PM is regulated by the United States Environmental Protection
Agency (U.S. EPA) under the Clean Air Act (U.S. Environmental
Protection Agency, 2018). The National Ambient Air Quality Standards
(NAAQS) are set to protect public health and the environment. For

https://doi.org/10.1016/j.atmosenv.2019.116946
Received 5 February 2019; Received in revised form 13 August 2019; Accepted 1 September 2019

∗ Corresponding author.
E-mail address: apolidori@aqmd.gov (A. Polidori).

Atmospheric Environment 216 (2019) 116946

Available online 03 September 2019
1352-2310/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13522310
https://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2019.116946
https://doi.org/10.1016/j.atmosenv.2019.116946
mailto:apolidori@aqmd.gov
https://doi.org/10.1016/j.atmosenv.2019.116946
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2019.116946&domain=pdf


PM2.5 concentrations, the NAAQS is set at 12.0 μg/m3 (annual mean)
and 35 μg/m3 (24-hr daily). Compliance with the NAAQS is determined
by stationary ambient air monitoring sites (AMS) utilizing in-
strumentation operated as U.S. EPA Federal Reference Method (FRM)
or Federal Equivalent Method (FEM). Networks of monitoring stations
are typically designed to monitor air pollutants at a regional level to
determine attainment of the NAAQS at a regional scale. An increasing
number of studies have found the spatial and temporal resolution of
these regional sites to be insufficient to characterize air pollutants at a
community or neighborhood scale for pollutants that exhibit high
spatial variability such as traffic-related PM (Apte et al., 2017; Gu et al.,
2018; Ye et al., 2018).

1.2. Low-cost sensors

Technological advancements have initiated a paradigm shift in the
way air quality data is measured and shared to the public. This shift has
been driven by the emergence of “low-cost” sensors for measuring both
gas and particle pollutants. Numerous sensor models with prices ran-
ging from $150 to $3000 USD are available to the public with some
vendors offering open data access and visualization (Snyder et al.,
2013). These low-cost sensors can provide real or near-real time pol-
lutant information at increased spatial resolutions with the potential to
complement and expand the capabilities of existing ambient air mon-
itoring networks and provide meaningful measurements at the local
scale (Sadighi et al., 2018). While the utility of these measurements
depends on the performance of the sensor in a specific environment,
sensors with low intra-model variability could be spatially deployed in
a community to supplement existing regulatory-grade measurements
and obtain hyper local measurements that could support emission re-
duction strategies such as those that will be designed for the California
Assembly Bill (AB) 617. AB 617 was authored, passed, and signed to
address the impacts of air pollution in disadvantaged neighborhoods by
providing funding for emission reduction strategies and for air pollution
monitoring at the local community scale.

Many low-cost sensors are sold to the public with minimal testing,
maintenance recommendations, and standard operating procedures
(Snyder et al., 2013; Lewis and Edwards, 2016). To date, there have
been a limited number of systematic studies using an established pro-
tocol to characterize the performance of PM sensors in ambient con-
ditions where end-users are likely to deploy these sensors (Morawska
et al., 2018). Without systematic evaluation of the performance of these
devices and dissemination of results in an easy-to-understand manner,
the consumers are left to making purchasing decisions based on man-
ufacturer marketing strategies, compatibility with cellular devices, ex-
terior appearance of the sensor, and online product reviews. Some ex-
amples of marketing quotes for sensors evaluated in this paper include
“Most Advanced Air Quality Sensor,” “Professional grade, highly ac-
curate indoor/outdoor air quality monitoring system,” “Buy the Best Air
Pollution Monitor," and “Tested by AQ-SPEC.”

Prior published studies have evaluated the performance of several
low-cost PM sensors under ambient conditions that are also evaluated
in this paper. To the best of our knowledge, these include the AirBeam
(Jiao et al., 2016; Mukherjee et al., 2017; Borghi et al., 2018), Alpha-
sense OPC-N2 (Mukherjee et al., 2017; Crilley et al., 2018), PurpleAir
(Kim et al., 2019; Magi et al., 2019), and Foobot for indoor air quality
(Moreno-Rangel et al., 2018). This represents a small fraction of the PM
sensors currently available to consumers and with many of the eva-
luations performed to evaluate the fit for purpose of a sensor for a
specific project or deployment. The U.S. EPA has also evaluated the
performance of low-cost sensors in ambient environments using a
standard protocol with evaluation results for the TSI AirAssure, Air-
Beam, Alphasense OPC-N2, and Shinyei PM Evaluation kit which are
also evaluated in this work (Williams et al., 2014; Jiao et al., 2016;
Feinberg et al., 2018; U.S. Environmental Protection Agency, 2019).
While this paper focuses on commercially available end user products,

other researchers have evaluated the performance of the Original
Equipment Manufacturer (OEM) PM sensors that include Plantower,
Shinyei, and Nova Fitness OEM sensors (Austin et al., 2015; Kelly et al.,
2017; Badura et al., 2018; Johnson et al., 2018; Zheng et al., 2018;
Bulot et al., 2019; Liu et al., 2019; Sayahi et al., 2019; Zamora et al.,
2019). A comprehensive review of low-cost sensors technology, appli-
cations, and outcomes is available in the literature (Morawska et al.,
2018) and a comprehensive review of air sensor performance metrics
and targets has been published (Williams et al., 2018). These reviews
point out the diversity of work currently being published with differ-
ences in performance metrics used, types and duration of performance
evaluations, and types of reference equipment by which sensors are
evaluated against. This work differs from prior studies in that it presents
the results of a large number of PM sensors evaluated in triplicate under
a systematic protocol at one location. Many of these sensors have not
been previously evaluated for performance and published in the lit-
erature.

As low-cost sensors become increasingly popular for both re-
searchers and the general public, characterizing the performance of
these sensors and educating the public about their appropriate appli-
cations, limitations, and data interpretation has become extremely
important. Performance characterization will minimize confusion par-
ticularly when low-cost sensors report information that conflicts with
data generated from reference-grade instrumentation operated by the
local air pollution control districts (APCD). The South Coast Air Quality
Management District (South Coast AQMD) established the Air Quality
Sensor Performance Evaluation Center (AQ-SPEC; www.aqmd.gov/aq-
spec) in mid-2014 to provide the public with unbiased information
about the performance of commercially available low-cost sensors. AQ-
SPEC performs a systematic and thorough performance evaluation of
commercially available sensors in both field- and laboratory-based
testing. In the field, air quality sensors are evaluated in triplicate for a
period of two months to provide adequate statistical information to
evaluate overall sensor performance against reference-grade in-
strumentation (Polidori et al., 2017). In the laboratory, a state-of-the-
art characterization chamber is used to challenge the sensors with
known concentrations of particle and gaseous pollutants under con-
trolled environmental conditions (Papapostolou et al., 2017). AQ-SPEC
has succeeded in providing potential end users (consumers and scien-
tific researchers) with the necessary information to make informed
product selections from a wide variety of commercially available pro-
ducts. This paper presents the field evaluations results of 12 commer-
cially available low-cost PM sensors under ambient conditions as part of
the ongoing AQ-SPEC sensor evaluation work. Sensor performance is
evaluated systematically according to a documented evaluation pro-
tocol.

2. Methodology

2.1. Field deployment

The methods used to evaluate low-cost sensors in the field are de-
scribed in detail in the AQ-SPEC Field Testing Protocol (Polidori et al.,
2017). Briefly, low-cost air quality sensors are evaluated under ambient
conditions for an 8-week field deployment at a fully instrumented AMS.
Commercialized sensors are typically tested as off-the-shelf and out-of-
the-box products without prior modification or calibration (i.e., zero,
span). Sensors are operated according to the sensor manufacturer's user
guide or manual if available. The low-cost sensors are deployed in tri-
plicate so that intra-model variability can be examined and to provide
the ability to detect potential malfunctions or sensor failures in a single
unit. Sensors that are ruggedized for inclement weather (designed for
ambient air monitoring) are typically mounted outside on the protec-
tive railing of the AMS. Sensors that are not ruggedized (designed for
indoor air monitoring) are deployed in a custom-built sensor shelter.
During the field evaluations, sensors were checked roughly once per
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week to confirm normal sensor operation and continuous data collec-
tion.

2.2. Site location and characteristics

The sensors evaluations took place at the South Coast AQMD
Riverside-Rubidoux Air Monitoring Station (RIVR AMS) as part of the
ongoing AQ-SPEC sensor evaluations. RIVR AMS, shown in appendix
Figure S-1 (a), is a fully equipped regulatory air monitoring station with
particulate matter instrumentation operating as FRMs and FEMs. This
monitoring station is an inland location that is downwind of the Los
Angeles Air Basin and is heavily impacted by transported PM from
upwind sources as well as a nearby highway. The nearest major
highway to the site is the California State Route 60 (SR-60) located
0.8 km to the north/northeast of the site. In the general vicinity of the
station, land use includes apartment complexes and single-family re-
sidences, school grounds, retail outlets, and vacant lots. Figure S-2
shows the typical seasonal average chemical composition of PM2.5 at
RIVR AMS. Ambient PM2.5 in this area is mainly comprised of sec-
ondary inorganic aerosols (i.e., nitrate, sulfate, ammonia) which ac-
counts for 49–68% of the total PM2.5 mass depending on the season.
Organic matter is the second major contributor to PM2.5 mass in this
area (19–32%), followed by elemental carbon (4–10%), crustal material
(dust, 4–6%), trace ions (e.g., sodium, potassium; 1–3%), and other
trace elements (e.g., arsenic, barium; ~1%) (Hasheminassab et al.,
2014).

2.3. Sensor selection and evaluation timing

The 12 commercially available low-cost sensors were tested be-
tween February 2015 and March 2018. These sensors vary in cost from
approximately $150 to $3000 USD. Table 1 provides a description of
the 12 sensors with make, model, time resolution, estimated cost, and
pollutants measured. Even though several of these sensors are devel-
oped for indoor air quality monitoring and not specifically for outdoor
ambient monitoring, the evaluation of the technology provides valuable
insights into the emerging market of air quality sensors with regards to
their use in ambient air monitoring applications.

While more than 12 PM sensors have been evaluated in the AQ-
SPEC program, the selection of these 12 sensors was based on whether
the sensor is commercially available, measures PM2.5 (μg/m3), tested
within the three-year time span, and exhibited acceptable data recovery
during the evaluation time period. The sensors were exposed to ambient
air for a period of approximately 30–60 days. The timing of the eva-
luation was dependent on when the sensors were received and when
space was available at RIVR AMS or in the sensor shelter.

2.4. Reference instrumentation

While the RIVR AMS is equipped with both FRM and FEM in-
strumentation, the performance of the PM sensors selected for this
study are evaluated against 1-h FEM measurements of PM2.5. The
gravimetric FRM 24-h integrated filter mass measurements do not
capture the high time resolution of low-cost sensors. For the purposes of
this paper, a Met One Beta Attenuation Monitor (BAM), U.S. EPA de-
signated Class III FEM (EQPM-0308-170) for monitoring PM2.5, was
used to compare against the low-cost sensor measurements. The Met
One BAM provides 1-hr average PM2.5 concentrations and is shown in
Figure S-1 (b & c).

2.5. Principle of operation of particulate matter sensors

The 12 PM2.5 sensors evaluated in this paper are categorized as
optical sensors with regards to their principle of operation. Optical
methods are based on the light scattering of aerosols which is a function
of the wavelength of the light source along with the size, composition,
and refractive index of the aerosol. Aerosols flow across a focused beam
of light and a photodetector records the intensity of the scattered light.
These sensors can be categorized into volume scattering devices and
optical particle counters (OPCs). In volume scattering devices, light is
scattered by the ensemble of particles and detected by a photodetector
which provides a single digital or analog output. This output is con-
verted to particle mass concentrations by a prior calibration with a test
aerosol and collocation with some reference or research grade in-
strumentation. In OPCs, the aerosol particles are counted and categor-
ized into distinct size bins. Particle mass concentrations are then cal-
culated based on number, size, and assumptions with regards to the
shape, density, and refractive index of the aerosol (Morawska et al.,
2018). The OEM sensor manufacturer and/or end-product integrator
often develops software algorithms to provide a corrected value for
particle mass concentration and consider these algorithms as proprie-
tary technology.

2.6. Sensor shelter

A louvered aluminum shelter was designed and constructed to
house and protect the non-ruggedized air quality sensors from incle-
ment weather conditions, such as rain, wind, and direct sunlight. The
shelter is shown in appendix Figure S-1 (d & e). The main compartment
of the shelter is approximately 1× 1×1m and designed with louvered
vents and a mesh floor to allow for air circulation. The shelter has three
aluminum mesh shelves upon which the sensors are placed for the field
deployment. The shelter is designed in a manner to provide maximum
movement of air through the enclosure and a sensing environment that
is near-ambient conditions for pollutants and weather conditions.

2.7. Data analysis

Upon completion of the field deployment, the data was collected
and joined for analysis. Data from the sensor triplicate was first vali-
dated following basic QA/QC procedures in which obvious time-series
outliers, negative values, continuing zeros, and invalid data points
(text, symbols, and blanks) were removed. Obvious time-series outliers
were typically extremely high values that were found to be outside of
the measurement range of a sensor or outside the bounds of typical
ambient PM2.5 concentrations. The remaining data were then averaged
over 1-h time intervals and matched by date and time to the hourly FEM
BAM PM2.5 data. Data recovery of at least 75% of the sub hourly raw
sensor data was required for a 1-hr average data point to be considered
valid. The 1-hr average reduces the noise associated with measurements
at shorter time resolutions.

Statistical analysis was conducted on the 1-hr time matched data to
examine data completeness, intra-model variability, least-squares linear

Table 1
List of sensors evaluated and sensor specifications.

Manufacturer Model Pollutants Measured Time
Resolution

Cost

Shinyei PM Evaluation
Kit

PM2.5 1-min $1000

Alphasense OPC-N2 PM2.5 < 1-min $450
TSI AirAssure PM2.5 5-min $1000
Hanvon N1 PM2.5, HCHO 1-min $200
Airboxlab Foobot PM2.5, CO2, VOC 5-min $200
Kaiterra LaserEgg PM2.5 < 1-min $200
PurpleAir PA-II PM2.5, PM10, PM1.0 < 1-min $230
HabitatMap Air Beam 1 PM2.5 1-min $200
SainSmart Pure Morning

P3
PM2.5, CO2, HCHO <1-min $170

IQAir AirVisual Pro PM2.5, CO2, < 1-min $270
Uhoo uhoo PM2.5, O3, NO2, CO,

CO2, TVOC
1-min $300

Aeroqual AQY PM2.5, O3, NO2 1-min $3000

B. Feenstra, et al. Atmospheric Environment 216 (2019) 116946

3



regression statistics, measurement error, and impact of environmental
conditions. Following the data recovery calculations, the 1-hr time
matched data sets were subjected to two data reduction filters to im-
prove inter- and cross-model comparability. First, all rows with a
missing PM2.5 concentration for either the reference instrument or one
of the three sensors was dropped from further analysis. Secondly, as
regression statistics can be dependent on the range of PM experienced
during the evaluation, data rows where the FEM BAM PM2.5 con-
centration exceeded 50 μg/m3 were removed from further analysis. The
PM2.5 concentration of 50 μg/m3 was selected to include nearly four
average standard deviations (8.9 μg/m3) from the mean of means BAM
PM2.5 concentration (14.2 μg/m3, Tables S–1) experienced during the
12 evaluations periods. This filter excludes only a small fraction (< 3%
filtered per data set) and improves the comparability between the
sensor evaluations. The equations for data recovery are provided in the
appendix as Eq. S-1 and S-2.

Intra-model variability within a triplicate of sensors is defined as the
degree to which the three sensors agree with one another. This is de-
termined by calculating the mean PM2.5 concentrations as measured by
individual sensors within a triplicate and comparing with the mean of
means and standard deviation (SD) for the mean of means. The SD for
the mean of means provides a metric for intra-model variability. A high
SD for the mean of means indicates high intra-model variability
whereas a low SD indicates low intra-model variability.

Accuracy is defined as the degree to which the 1-hr average PM2.5

concentrations generated from the low-cost sensors conforms to the
PM2.5 measurements from the FEM BAM instrument. Accuracy can be
examined by looking at the regression statistics and measurement error
between sensor and reference instruments. When reviewing the slope
and intercept of the best fit line for determining accuracy, the im-
portance of the R2 statistic must not be overlooked. The least squares
linear regression provides a best fit linear equation that is shown in Eq.
S-3. In an ideal situation where the sensor perfectly matches the re-
ference grade instrumentation, the slope (m) would be 1.0, intercept (b)
0.0, and the coefficient of determination (R2) would be at or near 1.0.
The R2 statistic measures the scatter of the data points around the fitted
linear regression line and provides a measure for how strongly varia-
tions in sensor-generated PM2.5 concentrations are related to variations
in BAM-generated PM2.5 concentrations. When the R2 value is below a
certain threshold (R2 < 0.70 for the purposes of this paper), examining
the slope and intercept values to determine accuracy is not relevant due
to the magnitude of scatter around the best fit line.

Mean Bias Error (MBE) and Mean Absolute Error (MAE) are calcu-
lated in similar fashion with the MAE taking the absolute value of the
hourly differences between the sensor and BAM measurements. The
MBE between the sensor and the reference BAM instrument provides a
metric that indicates the tendency of the sensor to either under- or over-
estimate the reference PM2.5 mass concentrations. The units of both
MBE and MAE are calculated in μg/m3 which is identical to the units of
measurement for both sensor and FEM instrument. This provides a
hands-on way to visualize the error especially with regards to identi-
fying the cause of the error when reviewing the linear regression re-
sults. Care must be taken with the MBE statistic as over-estimated errors
will cancel out under-estimated errors in the calculation of MBE. The
MAE provides a better metric for actual measurement error between
sensor and reference. The equations for MBE and MAE are found in
equations (1) and (2), respectively. The Root Mean Square Error
(RMSE) statistic is an additional metric for looking at the measurement
error with the RMSE being disproportionately impacted by large errors.
The equation for RMSE is found in equation (3).

=
=

Mean Bias Error (MBE) 1
n

(X X )
i 1

n

i t
(1)

=
=

Mean Absolute Error (MAE) 1
n

(X X )
i 1

n

i t
(2)

= =
n

Root Mean Square Error (RMSE)
(X X )i

n
1 i t

2

(3)

Where,

Xi is the 1-hr average measurement by the low-cost sensor
Xt is the 1-hr average measurement provided by the FEM PM2.5 Met
One BAM
n is the number of 1-hr time-matched data pairs

Some of the sensors have unique data recovery situations or unique
methods for reporting data that require further attention and analysis.
Due to a sensor malfunction, the Uhoo #2 sensor had a low data re-
covery of 47.2% and was therefore excluded from subsequent data
analysis. The Purple Air PA-II has two OEM sensors and reports two
similar but non-identical PM2.5 concentrations. Data from these two
OEM sensors were time matched and then averaged to provide a single
PM2.5 concentration per PA-II to compare with the reference in-
strumentation. The CF= atm measurement was selected for the Purple
Air sensor based on the OEM sensor manufacturer's, Plantower, re-
commendation for ambient measurements according to their manual
(Yong and Haoxin, 2016).

3. Results and discussion

3.1. Field conditions and data recovery

Twelve sensors were evaluated during specific and unique time
periods taking place over three years: 02/05/15 to 03/27/18. The ac-
tual time periods of the evaluations are random and take place as the
AQ-SPEC program receives sensors to evaluate and space is available in
the sensor shelter. The ambient environment under which each tripli-
cate of sensors is evaluated is characterized by specific, non-repeatable
conditions for aerosol particles (size, count, shape, refractive index,
speciation, and mass distribution) and climate conditions (temperature,
relative humidity, wind, precipitation, etc.). Tables S–1 in appendix
provides a summary of the field conditions for temperature, relative
humidity, and hourly BAM FEM PM2.5 mass concentrations experienced
for the 12 distinct evaluation periods. The mean ambient temperature
varies between the 12 evaluations and ranges between 12.3 and 25.2 °C
indicating that seasonality differences in temperature do exist between
the individual sensor evaluations. The mean RH between the 12 eva-
luations ranges from 48.1 to 67.9% with a mean of means at
54.3 ± 5.3%. The average SD for RH for the individual evaluations
is± 23.3% RH indicating that while moderate seasonal differences in
RH exists between evaluations, the individual evaluations experienced
a wide range of RH conditions. The BAM PM2.5 mean concentration for
the 12 evaluations ranged from 11.1 to 17.2 μg/m3 with a mean of
means at 14.2 ± 2.0 μg/m3. The average SD for PM2.5 individual
evaluation periods is 8.9 μg/m3 indicating that while moderate sea-
sonality differences in PM2.5 exist, the individual evaluation periods
experienced a range of PM2.5 concentrations. The max PM2.5 values
experienced during the 12 evaluations varied significantly between
evaluations with max hourly concentrations ranging from 38 to 133 μg/
m3 indicating the need to filter out these higher PM2.5 events to
maintain a consistent concentration range between the evaluations.

The 1-hr average data recovery for the sensor triplicates is high with
recovery>79% for all sensors with most sensors nearing 99% data
recovery as shown in Tables S–1. After processing the hourly matched
data points for missing values (sensor triplicate or reference) and fil-
tering out values for BAM PM2.5 concentrations > 50 μg/m3, the
number of hourly matched data points (n) varied between the 12 eva-
luations ranging between 732 and 1917 data points with data recovery
ranging from 71 to 98%.
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3.2. Summary statistics and intra-model variability

Table 2 provides summary statistics with mean PM2.5 concentra-
tions measured for the three sensors, the mean of means, and the± SD
around the mean of means which provides a metric for intra-model
variability. Four sensors, namely Aeroqual AQY, Purple Air PA-II,
SainSmart P3, and TSI Air Assure, indicate low intra-model variability
with the SD less than 0.75 with regards to the mean of means. Three
sensors, namely the Laser Egg, Shinyei PM evaluation kit, and IQAir
AirVisual Pro, indicate low to moderate intra-model variability with
0.76≤ SD≤1.5. Four sensors, namely Alphasense OPC-N2, Air Beam
1, Foobot, and Hanvon N1, indicate moderate to high intra-model
variability with 1.51≤ SD≤2.75. The Uhoo indicates high intra-
model variability with SD at± 6.23.

3.3. Least squares linear regression and measurement error

Least squares linear regression was performed for each sensor
within a triplicate with the results shown in Table 3. Six of the 12
sensors were found to have a triplicate average of R2≥0.70 and will be
discussed further with regards to slope/intercept for accuracy. Four
sensors, namely Aeroqual AQY, Purple Air PA-II, Sainsmart P3, and the
Shinyei PM Evaluation kit indicated high linearity with R2≥ 0.75 and
two sensors, namely TSI Air Assure and Air Visual pro, indicated line-
arity with 0.70≥R2≥0.74. With regards to slope as a measure for
accuracy, four of these six sensors, namely Aeroqual AQY, Shinyei PM
Evaluation kit, TSI Air Assure, and IQAir Air Visual Pro, were found to
have slope values within± 0.25 of the 1.0 ideal value. The Purple Air
PA-II and the SainSmart P3 were found to generally overestimate FEM
PM2.5 concentrations by roughly 50% with slope values between 1.31
and 1.68. With regards to intercept value as a measure for accuracy,
three sensors, namely the Sainsmart P3, Shinyei, and IAQir Air Visual
Pro were found to have intercept values |b|< 2.5 from the ideal 0.0
value. The remaining three sensors, namely the Aeroqual AQY, Purple
Air PA-II, and TSI AirAssure, were found to have higher intercept values
ranging from 2.6< |b|< 4.0.

The calculated measurement errors (MBE and MAE) between sen-
sors and the BAM PM2.5 measurements are shown in Table 3. Four
sensors, namely the Aeroqual AQY, Kaiterra LaserEgg, Shinyei PM Kit,
and IQAir AirVisual Pro, have MAE near or less than 5 μg/m3. Five
sensors, namely the Alphasense OPC, Air Beam 1, Purple Air PA-II,
Sainsmart P3, and the TSI Air Assure, have MAE in the 5–7.5 μg/m3

range. Three sensors, namely the Foobot, Hanvon N1, and the Uhoo,
have MAE greater than 7.5 μg/m3. For 8 of the 12 sensors, namely the
Aeroqual, Foobot, Alphasense OPC, AirBeam 1, Hanvon N1, Purple Air
PA-II, SainSmart P3, and TSI Air Assure, the proportion of MBE to MAE
is greater than 0.65 indicating that the predominant error associated

with these sensors is systematic in nature rather than random. Ac-
counting for this systematic bias error could significantly reduce the
measurement errors associated with low-cost sensors.

Several interesting observations can be made with regards to the
regression statistics and measurement errors. The Aeroqual AQY bias
error (triplicate average: 3.1 μg/m3) is strikingly close to the linear
regression intercept values (triplicate average: 2.8 μg/m3) indicating
that the sensor may suffer from a zero offset and that correcting for this
offset may potentially reduce measurement error. For the Hanvon N1,
the MBE accounts for over 95% of the MAE indicating a strong positive
bias error which is confirmed with slope values > 1.73 with the sensor
often overestimating BAM PM2.5 concentrations by over 100%. The
Kaiterra Laser Eggs regression statistics show near ideal slope and in-
tercept values, but the R2 was found to be less than 0.60. The MBE/MAE
ratio for the Laser Eggs is less than 0.5 indicating that the measurement
error is dominated by random error rather that systematic or bias error.
This sensor highlights the importance of evaluating accuracy not only
on slope/intercept values, but also with the R2 statistic and measure-
ment error to gain a more comprehensive understanding of sensor
performance.

3.4. Comparison of results with previous sensor evaluations

Sensor performance evaluations from prior studies often differ with
regards to methodology with differences in geographic locations, length
of evaluation, meteorological conditions, particle properties, reference
instrumentation, and purpose of evaluation. The most comparable
sensor evaluations to this work have been performed by the U.S. EPA
according to a standard protocol at a reference air monitoring site with
non-ruggedized sensors housed in a sensor shelter. The comparison
between the results of the AQ-SPEC and U.S. EPA sensor evaluations for
the TSI AirAssure, Habitat Map AirBeam, Alphasense OPC-N2, and the
Shinyei PM evaluation kit are provided in Table 4. The differences in
slope, intercept, and correlation between these distinct geographic lo-
cations indicate that sensor performance may vary by geographic re-
gions that experience different concentration ranges and aerosol optical
properties (Feinberg et al., 2018).

The AirBeam and Alphasense OPC-N2 were also evaluated in
Cuyama Valley, CA against a Grimm 11-R for 12 weeks. Average re-
gression statistics for the AirBeam were slope of 0.38, intercept of 4.1,
and R2 of 0.66 and for the Alphasense OPC-N2 were slope of 0.14, in-
tercept of 2.5, and R2 of 0.41 for hourly data (Mukherjee et al., 2017).
While the correlations are similar to the results presented in this study,
the slope/intercepts between evaluations differ with the AirBeam
overestimating PM2.5 in Riverside and underestimating it in the
Cuyama Valley. While both studies found the Alphasense OPC-N2 to
underestimate PM2.5 concentrations, the magnitude of the negative bias

Table 2
Summary statistics and intra-model variability for sensor triplicates.

Sensor Reference

Mean ± SD (μg/m3) Mean of Means BAM PM2.5

Sensor 1 2 3 Mean ± SD (μg/m3) Mean ± SD (μg/m3)

Shinyei PM Evaluation Kit 14.8 ± 13.1 14.6 ± 12.7 13.0 ± 11.5 14.1 ± 0.80 15.2 ± 12.3
Alphasense OPC-N2 14.3 ± 6.2 10.1 ± 6.1 11.4 ± 7.0 11.9 ± 1.74 15.6 ± 6.6
TSI AirAssure 15.6 ± 13.4 17.4 ± 13.0 16.7 ± 12.4 16.6 ± 0.75 13.2 ± 11.3
Hanvon N1 32.0 ± 21.7 30.5 ± 19.7 27.6 ± 17.3 30.0 ± 1.80 15.2 ± 10.3
Airboxlab Foobot 19.7 ± 10.3 17.3 ± 8.6 24.0 ± 10.3 20.3 ± 2.75 14.4 ± 6.4
Kaiterra LaserEgg 15.6 ± 9.2 13.5 ± 8.2 12.9 ± 8.0 14.0 ± 1.16 14.0 ± 6.1
PurpleAir PA-II 16.9 ± 19.1 16.5 ± 18.6 16.7 ± 18.0 16.3 ± 0.13 12.1 ± 11.3
HabitatMap Air Beam 1 14.1 ± 9.3 17.0 ± 12.8 18.0 ± 14.5 16.4 ± 1.64 11.1 ± 6.6
SainSmart Pure Morning P3 14.6 ± 12.2 15.7 ± 12.8 14.7 ± 10.6 15.0 ± 0.51 11.1 ± 6.6
IQAir Air Visual Pro 17.5 ± 10.2 17.6 ± 10.2 20.7 ± 11.4 18.6 ± 1.51 17.2 ± 7.3
Uhoo 32.6 ± 14.9 – 20.1 ± 11.0 26.3 ± 6.23 17.1 ± 7.3
Aeroqual AQY 9.8 ± 11.5 9.7 ± 11.7 9.3 ± 10.8 9.6 ± 0.24 13.8 ± 14.4
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was larger in the Cuyama Valley than in Riverside. In a long-term
performance evaluation of the Purple Air PA-II sensor against a Met
One BAM 1020 in Charlotte, North Carolina, regression statistics found
slope at 2.2, intercept at 1.3, and R2 at 0.54 (Magi et al., 2019). These
long-term evaluation results differ from the findings in this study with
2-month evaluation average regression statistics finding a slope of 1.63,
intercept of −2.66, and R2 of 0.95. This significant difference between

studies indicates that the length of the evaluation may also impact
correlation against reference monitors especially if a sensor degrades or
malfunctions during a long-term evaluation.

3.5. Impact of environmental conditions on bias error

A contributing factor for diminishing performance of low-cost

Table 3
Linear Regression Statistics and measurement error for sensor triplicates.

Sensor Slope Intercept Measurement Error (μg/m3)

# R2 Slope 95% CI Intercept 95% CI MBE MAE RMSE

Shinyei PM Evaluation Kit 1 0.75 1.18 0.04 −1.48 0.59 0.9 4.5 6.8
2 0.73 1.13 0.04 −1.07 0.60 0.7 4.5 6.7
3 0.75 1.03 0.03 −1.29 0.52 −0.9 4.2 5.8

Alphasense OPC-N2 1 0.67 0.78 0.04 2.08 0.67 −1.3 3.3 4.1
2 0.38 0.57 0.05 1.18 0.90 −5.5 6.5 7.8
3 0.40 0.67 0.06 1.03 1.01 −4.2 5.9 7.2

TSI AirAssure 1 0.73 1.10 0.04 1.61 0.60 2.9 5.1 7.6
2 0.74 1.08 0.03 3.66 0.57 4.7 6.0 8.2
3 0.72 1.01 0.03 3.81 0.56 4.0 5.6 7.6

Hanvon N1 1 0.56 2.13 0.10 0.91 1.71 17.4 18.1 24.1
2 0.54 1.91 0.10 2.69 1.59 15.9 16.3 21.9
3 0.58 1.73 0.08 2.39 1.34 13.1 13.5 18.1

Airboxlab Foobot 1 0.57 1.32 0.06 0.28 1.00 5.0 6.4 8.6
2 0.54 1.08 0.05 1.35 0.86 2.6 4.7 6.4
3 0.54 1.29 0.07 4.89 1.03 9.2 9.5 11.7

Kaiterra LaserEgg 1 0.57 1.15 0.06 −0.08 0.95 2.0 4.7 6.4
2 0.56 1.02 0.06 −0.40 0.85 −0.1 4.1 5.4
3 0.58 1.01 0.06 −0.80 0.82 −0.7 4.0 5.2

PurpleAir PA-II 1 0.95 1.68 0.03 −3.06 0.51 5.0 7.0 10.6
2 0.95 1.63 0.03 −2.84 0.49 4.7 6.7 10.0
3 0.95 1.58 0.03 −2.08 0.48 4.8 6.7 9.7

HabitatMap Air Beam 1 1 0.59 1.08 0.05 2.03 0.63 2.9 4.4 6.6
2 0.57 1.47 0.07 0.46 0.90 5.7 6.5 10.6
3 0.57 1.66 0.08 −0.62 1.01 6.8 7.5 12.4

SainSmart Pure Morning P3 1 0.76 1.52 0.05 −2.34 0.69 3.5 5.3 7.8
2 0.77 1.61 0.05 −2.19 0.70 4.6 5.9 8.8
3 0.74 1.31 0.05 0.06 0.62 3.5 5.0 6.8

IQAir AirVisual Pro 1 0.69 1.15 0.04 −2.38 0.73 0.2 4.4 5.8
2 0.69 1.16 0.04 −2.42 0.73 0.3 4.4 5.8
3 0.72 1.31 0.04 −1.97 0.77 3.4 5.3 7.3

Uhoo 1 0.00 0.09 0.11 31.11 2.03 15.4 17.7 22.4
2 – – – – – – – –
3 0.00 0.02 0.08 19.74 1.51 2.9 10.1 13.5

Aeroqual AQY 1 0.78 0.99 0.02 −2.75 0.39 −2.9 4.5 6.1
2 0.79 1.01 0.02 −3.08 0.38 −3.0 4.7 6.2
3 0.79 0.94 0.02 −2.63 0.35 −3.4 4.6 6.1

Table 4
Comparison between published sensor evaluation results.

South Coast AQMD U.S. EPA U.S. EPA

Location Riverside, California Denver, Colorado Atlanta, Georgia

Reference Feinberg et al. (2018) Jiao et al. (2016)
Comparison Instrument Met One BAM 1020 Grimm 180 EDM Met One BAM 1020
Time-period ~8 weeks Long-term >30 days
Time Average 1-HR 1-HR 12-HR

Avg Regression Stats Avg Regression Stats Avg Regression Stats

Sensor Slope Intercept R2 Slope Intercept R2 Slope Intercept R2

TSI
AirAssure

1.06 3.03 0.73 1.15 0.41 0.63 – – –

Habitat Map
AirBeam

1.40 0.62 0.58 – – 0.69 – – 0.43

Alphasense
OPC-N2

0.67 1.43 0.48 0.47 −1.48 0.16 – – –

Shinyei
PM Evaluation Kit

1.11 −1.28 0.74 0.56 0.52 0.51 0.72 7.48 0.36
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sensors when compared against reference instrumentation is due to the
impact of RH (Jayaratne et al., 2018). Some low-cost optical methods
adjust or calibrate in real-time for the impacts of RH on the conversion
from particle count to particle mass concentration (Hojaiji et al., 2017;
Di Antonio et al., 2018). While the BAM FEM monitor is equipped with
a heater to condition the aerosol to a set temperature and RH prior to
sampling, the low-cost sensors measure PM at ambient temperature and
RH. To examine the potential impact of RH on sensor response, hourly
bias errors were plotted against the hourly RH for all 12 sensors (Fig. 1).
Ideally, the slope of the best fit line would be zero and would be located
on the y= 0 axis. The bias error by RH plot for the Aeroqual AQY, TSI
AirAssure, and the Shinyei indicate that these sensors are not strongly
impacted by increasing RH. The remaining 9 sensors, except for the
Uhoo, indicate increasingly positive bias error as RH increases and are
ordered from left to right and top to bottom by magnitude of slope of
best fit line.

Addressing and correcting for the impact of RH on these optical
devices, by either advancing OPC hardware or by developing software
corrections algorithms for RH, would likely result in a reduction in the
measurement error associated with low-cost sensors. Care should be
taken when developing these software correction algorithms so that the
model or algorithm developed is based on scientifically relevant inputs

(i.e. ambient Temperature and RH collected in real-time) so as not to
over-fit the models to limited training data sets and to ensure that the
measurement is still a measurement (Hagler et al., 2018). Extensive
field testing to capture seasonal variabilities for temperature and RH
will help tremendously towards understanding the impacts of RH on
low-cost optical particle counters. Additionally, laboratory testing with
a sophisticated heating, ventilation, and air conditioning (HVAC)
system to control temperature, RH, and the particles environment can
provide valuable insights into the impacts of local weather conditions
and interferants on these devices (Papapostolou et al., 2017).

To examine the potential impact of PM2.5 concentrations on sensor
response, hourly bias errors were plotted against the hourly BAM PM2.5

for all 12 sensors (Fig. 2). No consistent trends are seen across the 12
sensors as PM2.5 concentrations increase. Individually though, Fig. 2
provides a telling story of where shifts between systematic and random
measurement error occur along the PM2.5 measurement range. For ex-
ample, the Purple Air sensor indicates predominant random error be-
tween 0 and 12 μg/m3 with scatter almost evenly distributed between
positive and negative bias. However, between 13 and 50 μg/m3 the
sensor indicates systematic positive bias error. On the other hand, the
Aeroqual AQY indicates systematic negative error that increases as
concentrations rise from 0 to 25 μg/m3. Above 25 μg/m3, the Aeroqual

Fig. 1. Impact of Relative Humidity (RH) on the bias error between Sensor and Met One BAM.
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AQY bias is scattered around the y=0 line indicating random error.
The Shinyei PM kit, AirVisual Pro, and Laser Egg indicate measurement
error dominated by random error with scatter evenly distributed be-
tween positive and negative bias. These sensors also exhibit lower
MBE/MAE ratios. Understanding when measurement error shifts be-
tween systematic and random error, can provide insights on how to
model sensor response to regulatory-grade equipment. It should be
noted that these observations are limited to the PM2.5 concentration
range of 0–50 μg/m3 and sensors may behave differently outside of this
range.

3.6. Limitations and future work

Evaluating the performance of low-cost air quality sensors has
limitations that must be acknowledged and understood. First, the am-
bient field environment is specific to location, time of year, weather
conditions, and the pollutant physical/chemical properties experienced
during the evaluation. The ambient environment experienced by a
sensor within an evaluation time period cannot be controlled or du-
plicated for subsequent tests. The results of this limited evaluation
provide an indication of the sensors performance under specific con-
ditions at the RIVR AMS. A performance evaluation of a sensor under

different environmental conditions and particle properties would likely
provide similar but non-identical results. To address these limitations of
field performance evaluations, sensors that perform well in the field are
submitted to the AQ-SPEC laboratory for testing in a characterization
chamber (Papapostolou et al., 2017). Secondly, a number of the sensors
evaluated are designed for indoor air quality and are not ruggedized for
ambient monitoring. These non-ruggedized sensors are installed inside
an aluminum shelter enclosure which protects the units from ambient
weather conditions. While the enclosure minimizes the effect of ex-
treme weather conditions and is designed to provide a near ambient
environment, the shelter environment is not identical to the ambient
environment sampled by the FEM BAM PM2.5 instrument.

The future development of performance targets for low-cost air
quality sensors would drive technology advancement and provide a
pathway to generate an increase in understanding and trust in low-cost
sensors. A sensor certification program could perform more rigorous
field testing that incorporates multiple sites across the country and
multiple seasons in a testing protocol similar to the process for instru-
ments to achieve designation as a FRM or FEM. Rigorous field testing
for PM sensors in various environments would be necessary as gen-
erating an aerosol environment in a laboratory identical to a local
aerosol environment (e.g., in terms of particle count, shape, refractive

Fig. 2. Impact of PM concentration on the bias error between Sensor and Met One BAM.
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index, speciation, source, size and mass distribution) is extremely dif-
ficult. A certification program with more rigorous field and laboratory
studies can enhance the current understanding of how particle com-
position can impact low-cost sensor performance with understanding
how these optical methods respond in environments dominated by re-
gional specific aerosols like inland dust, course silt, coastline sea salt,
secondary organic aerosol, and other regional specific aerosol compo-
sitions. A certification center could provide guidance and catalyze the
evolution of this technology, identify key data quality indicators, set
performance requirements, and increase trust in data generated by low-
cost sensors.

4. Conclusions

This paper presents the results of 12 low-cost PM2.5 sensors against
reference instrumentation at the South Coast AQMD RIVR AMS in
Southern California. The sensor products range in price from $150 to
$3000 USD with varying performance for intra-model variability, linear
regression statistics, and measurement errors. The high correlation
coefficients between sensors and the FEM BAM indicate that a number
of these low-cost units track the ambient PM concentrations of reg-
ulatory monitors well. For sensors that are highly correlated to the FEM
BAM, the slope and intercept offsets of the regression statistics indicate
that refinement or calibration of the sensors could be performed to
improve sensor performance and reduce measurement error.
Additionally, sensors with a high MBE/MAE ratio are impacted pre-
dominantly by systematic error which could potentially be accounted
for to reduce measurement error. The impacts of environmental con-
ditions (RH and PM concentration) were investigated and indicate that
the bias error for many low-cost optical particulate sensors on the
market are impacted by changing environmental conditions. Future
development by sensor manufacturers and sensor integrators that ad-
dress the positive bias error associated with RH will likely produce
sensors with less measurement error and that generate higher trust in
data collected. Not accounting for RH effects may lead to the collection
of measurements with a large bias error and may limit the usefulness of
these low-cost sensors and collected data. Due to the need for slope/
intercept and potential RH corrections for some sensors, the actual
utility of these devices may be limited to those who have access to
reference grade instrumentation and the data science skill set to de-
velop models and algorithms to correct the data. The technical re-
quirements to develop and apply these corrections in real-time can
potentially remove the usefulness of this technology from potential end-
users and limit usefulness to those that are trained and able to perform
the required corrections. For use by non-experts, low-cost sensors
should be easily operated, installed, configured, and provide data with
low measurement errors.

The overall state of the technology for measuring PM is improving
and commercially available products have the potential to provide
meaningful results to citizen scientists, communities, researchers, and
regulatory agencies. As the market continues to expand, air quality
measurement techniques and methodology is changing dramatically.
Validating the performance of these sensors is a critical step as this new
paradigm of low-cost sensing takes effect. The potential applications for
low-cost sensors are vast and properly characterizing of the perfor-
mance of these devices will provide insights into interpreting their re-
sults and reduce confusion especially when low-cost sensor data does
not agree with regulatory-grade instrumentation.
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